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Abstract. Accurate segmentation of lung nodules in computed tomography (CT)
scans is challenging due to extreme class imbalance, where nodules appear sparsely
among healthy tissue. We introduce a novel two-stage approach for lung nod-
ule segmentation, framing it as an anomaly detection problem. The method con-
sists of two stages: Stage 1 employs a custom Detection Transformer architecture
with deformable attention and focal loss to generate region proposals, addressing
class imbalance and localizing sparse nodules. In Stage 2, the predicted bounding
boxes are refined into segmentation masks using a fine-tuned variant of the Seg-
ment Anything Model (SAM). To address sparsity and enhance spatial context,
a 5mm Maximum Intensity Projection is applied to improve differentiation be-
tween nodules, bronchioles, and vascular structures. The model achieves a stage-2
DiceC of 91.4%, with stage-1 yielding an F1 score of 94.2%, 95.2% sensitivity,
and 93.3% precision on the LUNA16 dataset despite extreme sparsity, where only
5% of slices contain a nodule, outperforming existing state-of-the-art methods.
The model was additionally validated on a privately procured test dataset of 30
patients with significantly different characteristics, achieving a Dice coefficient of
78.3% despite significant distribution drift, demonstrating strong generalization
to clinical variability and establishing our approach as the new state-of-the-art for
lung nodule segmentation.

1 Introduction
Lung cancer is a leading cause of cancer-related deaths worldwide [3], with early detec-
tion being crucial for improving outcomes. Tumor boards, comprising oncologists, radi-
ologists, surgeons, and other specialists, manually segment nodules in CT scans to assess
size, location, and spread, a process that is time-consuming and resource-intensive. Im-
plementing a clinical decision support (CDS) system for auto-segmentation can improve
efficiency, patient outcomes, and reduce costs [26]. However, existing models struggle
with extreme class imbalance, as nodules appear infrequently, vary in size and shape,
and often resemble vasculature. We propose LN-Transformer, a two-stage segmentation
framework where Stage 1 employs a custom Deformable Detection Transformer for re-
gion proposal, leveraging MIP to enhance nodule visibility and focal loss to address
class imbalance. Stage 2 refines predictions into pixel segmentation masks using a fine-
tuned adaptation Segment Anything Model (SAM). This approach effectively handles
nodule sparsity, demonstrating potential for clinical application.
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2 Related Work

Thoracic Computed Tomography (CT) involves a series of 2D cross-sectional greyscale
images that when combined, form a detailed 3D representation of the patient’s thorax.
The LUNA16 dataset, derived from the LIDC-IDRI dataset, consists of 888 thoracic
CT scans containing 1,186 annotated lung nodules, annotated by four radiologists with
nodules larger than 3mm considered relevant. The challenge lies in the sparse occurrence
of nodules, only 0 to 5% of slices contain a nodule [24], and in the variability of voxel
sizes and scan resolutions across patients. This dataset serves as a critical benchmark
with numerous studies training architectures such as CNNs, 3D-CNNs, and U-Net [10].
However, transformer architectures remain underexplored in this domain.

Class imbalance often biases models toward the majority class, often leading to
high accuracy but poor detection capabilities. To mitigate this several strategies exist:
oversampling increases the minority class but misrepresents real-world prevalence [20],
while class weighting forces models to focus on underrepresented cases but can increase
false positives [5, 8]. Focal loss mitigates these issues by dynamically adjusting the loss
based on prediction confidence, down-weighting well-classified examples and empha-
sizing hard-to-classify, often maintaining precision while increasing accuracy [15].

Maximum Intensity Projection (MIP) is a widely used radiology technique [9] that
enhances nodule visibility by combining adjacent CT slices into a single 2D image,
projecting the highest attenuation voxel from a volume onto a 2D plane to preserve
3D spatial information [9]. MIP helps distinguish nodules, which appear as blobs, from
vessels, elongated tube-like structures, and improves detection of 3–10mm nodules [11].

Transformer architectures have emerged as a powerful alternative to CNNs in medi-
cal imaging. While CNNs excel at capturing local features, they struggle with long-range
dependencies, relationships between distant regions in an image [21]. Transformer self-
attention effectively models these dependencies, making it particularly valuable for dis-
tinguishing nodules from vessels [21]. DETR, a vision transformer, directly predicts ob-
ject locations via self-attention, replacing traditional region proposal methods but strug-
gles with slow convergence and small object detection [7, 27]. Deformable-DETR im-
proves this by introducing a deformable attention mechanism which is spatially adaptive
and computationally efficient. Unlike standard self-attention, which attends to all pixels
in an image, Deformable Attention selectively focuses on a small set of dynamically
learned sampling points around a reference location. This allows the model to adap-
tively refine its receptive field and capture fine-grained details of small objects while
significantly reducing computational overhead [27].

Segment Anything Model (SAM), trained on 1 billion masks, enables promptable
segmentation and is shown to effectively transfer knowledge to new datasets with fine-
tuning [12, 16]. MedSAM fine-tunes SAM on 1.5 million medical image-mask pairs to
focus on anatomical complexities in clinical settings [16].

3 Methodology

We present a novel approach to lung nodule segmentation for tumor boards by fram-
ing the task as anomaly detection. Our method splits the task into two stages: Stage 1
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Fig. 1. Data processing pipeline with nodule visible at the top left of lung. a) Original CT slice b)
Post Otsu segmentation and CLAHE c) Post 5mm MIP

serves as a region proposal phase to localize sparse nodules, while Stage 2 refines these
bounding boxes into pixel-wise segmentation masks. While the building blocks are well-
known, our novelty lies in unification of key architectural components such as DETR,
SAM along with strategies such as deformable attention, focal loss and MIP into a spe-
cialized framework. Our training dataset is based on LUNA16 and consists of 9,676 CT
slices, preprocessed to enhance nodule visibility through CLAHE, Otsu’s thresholding,
and a customized training regimen to improve convergence. Our model is validated on
an independent test set from the University Health Network (UHN), featuring 30 patients
with diverse imaging protocols to provide a more robust evaluation.

3.1 Data Preprocessing & Datasets

Our preprocessing pipeline prepares CT scan data for input into our Stage 1 network
shown in Figure 1. We first standardize anatomical structures by resampling CT slices
to a consistent voxel spacing of 1 × 1 × 1mm, ensuring uniformity. In order to isolate
lung tissue from the surrounding background, we employ Otsu’s method for threshold-
ing[19]. This is followed by morphological operations, including connected component
analysis and region erosion to obtain cleanly cropped lung regions. Slices at the su-
perior and inferior cranio-caudal extremes, which provide minimal diagnostic value,
are removed based on non-zero area size. This reduces the model’s search space from
15M to 5.25M pixels per patient improving focus on relevant areas. Post segmentation
Contrast Limited Adaptive Histogram Equalization (CLAHE) is applied to improve the
visibility of subtle features like small nodules [23]. Images are cropped to dimensions
of 256x256, and a 5mm MIP is finally applied to improve visibility of lung nodules by
producing a 2D image that highlights the densest features. This follows the expression
𝐼MIP(𝑥, 𝑦) = max𝑧{𝐼(𝑥, 𝑦, 𝑧)}. 𝐼MIP(𝑥, 𝑦) is the 2D image intensity at each (𝑥, 𝑦) loca-
tion, and 𝐼(𝑥, 𝑦, 𝑧) is the intensity of the original 3D image at voxel location (𝑥, 𝑦, 𝑧). A
slab thickness of 5mm was chosen as a compromise between differentiating the shapes of
vessels and nodules and limiting overlap between structures. The final training dataset
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Fig. 2. Comparison of Size Distributions in LUNA16 (left) and UHN Test Dataset (right).
LUNA16 contains primarily nodules, while UHN includes nodules and tumors.

consists of 9,676 MIP CT slices, with 1,226 containing nodules, split 70%-20%-10%
before augmentation. Non-nodule slices were slightly undersampled during training re-
sulting 12.7% positive class. This adjustment was necessary because lower nodule rates
made training less effective due to excessive sparsity. The test set maintained a 5% nodule
rate to reflect real-world conditions, with the adjustment leading to higher test accuracy.
Additionally, the training set contained augmentations to enhance variability including
flips, rotations (±15◦), brightness shifts (±15%), and Gaussian noise (0.001–0.18% SD).

A supplementary test dataset was obtained in collaboration with University Health
Network (UHN), comprising 400 treated patients imaged with a TOSHIBA Aquilion
scanner. The CT images have a 3mm slice thickness, 0.781mm pixel spacing, and pa-
tient ages ranging from 29 to 90 years (median: 68). All images were segmented by a
radiation oncologist. A subset of 30 patients (5,610 CT slices) was randomly selected
as a second validation set. Figure 2 highlights nodule diameter variations between UHN
and LUNA16. LUNA16 primarily contains small nodules (3–10mm), whereas UHN in-
cludes a broader distribution, with many tumors between 25–55mm. UHN’s 3mm slice
thickness exceeds LUNA16’s 2.5mm cutoff, potentially reducing nodule visibility. Pixel
spacing also differs, with UHN at 0.781mm and LUNA16 varying from 0.46–0.98mm.
These differences introduce significant distribution drift, making UHN a strong test for
model generalizability.

3.2 Stage One and Two Model Architecture

Figure 3 overviews our two-stage approach, where Stage 1 generates region proposals
to localize potential lung nodules in CT scans. Input images pass through a ResNet-50
CNN backbone for multi-scale feature extraction, then augmented with 2D sine-cosine
positional encodings and processed by the encoder’s DSA layers, which refine features
by attending to a sparse set of learnable sampling points around each nodule. DSA ag-
gregates features as 𝐲𝑞 =

∑𝑀
𝑚=1𝑊𝑚

(

∑𝐾
𝑘=1 𝐴𝑚𝑞𝑘 ⋅ 𝐱

(

𝐩𝑞 + Δ𝐩𝑚𝑞𝑘
))

, where 𝑀 is the
attention head count, 𝐾 the sampled points per head, 𝑊𝑚 the projection matrices, and
𝐴𝑚𝑞𝑘 the attention weight. The learnable offsets allow the model to dynamically adjusts
its receptive field for small and irregular nodules. Regular self-attention has complexity
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Fig. 3. Overview of the proposed LN-Transformer architecture, illustrating a sample CT MIP with
a nodule in the top left corner. MIP deconstructed into its 5 associated slices for Stage 2.

𝑂(𝐻2𝑊 2𝐶), but DSA reduces this to 𝑂(𝐻𝑊𝐾𝐶) where height H, width W, channels
C and K representing the number of sampled points per attention head. Final decoder
heads refine object queries into bounding boxes and confidence scores, which serve as
inputs for Stage 2 segmentation. Stage 1 was trained for 15 epochs using AdamW with
a learning rate of 10−4, scheduled to reduce every 10 epochs. Training used an L4 GPU
with mixed precision (16-bit), batch size of 4, gradient clipping (0.1), and accumulation
over 6 batches. A grid search optimized hyperparameters for stability and performance.

We fine-tuned MedSAM’s pretrained weights on a dataset of 1,400 CT slices, where
ground truth bounding boxes were used as prompts for SAM to simulate Stage 1 pre-
dictions. These acted as attention cues enabling targeted refinement while maintaining
full-image context. The dataset included 1000 slices with ground truth nodule bounding
boxes and 400 non-nodule slices to enhance false positive discrimination from Stage
1. Ground truth segmentation masks served as labels, and training was conducted us-
ing Dice-CrossEntropy loss with the Adam optimizer. Once trained, the Stage 2 auto-
segmentation model processed MIP slices and associated bounding boxes from Stage 1,
reconstructing individual CT slices to generate precise pixel-wise segmentation masks
as illustrated in Figure 3.

To address class imbalance, we incorporated focal loss into the DETR loss function
to enhance nodule detection by down-weighting easy samples and emphasizing hard-to-
classify cases [14]. The focal loss is defined as 𝐹𝐿(𝑝𝑡) = −𝛼𝑡(1−𝑝𝑡)𝛾 log(𝑝𝑡), where 𝑝𝑡 is
the predicted probability of the correct class, 𝛼𝑡 balances positive and negative examples,
and 𝛾 adjusts focus towards challenging samples. Hyperparameter tuning found 𝛾 = 2
and 𝛼𝑡 = 0.25 to provide an optimal balance between precision and recall.

4 Results

Table 1 summarizes the performance metrics with nodules size categories: small (up to
7mm), medium (7-15mm), and large (over 15mm). Precision measures the proportion of
correctly identified nodules among predictions, while sensitivity captures the percentage
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Table 1. Performance Metrics for Region Proposal (Stage 1) and Auto-Segmentation (Stage 2) on
LUNA16 and UHN Test Sets. IoU threshold = 0.5.

Metric LUNA16 UHN Test Set
F1/Dice Precision Sensitivity F1/Dice Precision Sensitivity

Stage 1: Region Proposal
F1 Score 94.2% – – 79.1% 74.9% 83.5%
Avg IoU (All) – 93.3% 95.2% – – –
IoU (Small) – 78.4% 83.3% – – –
IoU (Medium) – 96.7% 97.0% – – –
IoU (Large) – 97.8% 99.2% – – –
Slice Accuracy 97.1 – – 86.8% – –

Stage 2: Auto-Segmentation
Dice Coefficient 91.4% – – 78.3% – –

Table 2. Comparison of Nodule Segmentation on DiceC, Sensitivity, and Specificity

Author Architecture DiceC (%) Sensitivity (%) Specificity (%)

Agnes et al. [1] MRUNet-3D 89.0 94.8 84.2
Bhattacharyya et al. [4] DB-NET 88.9 90.2 77.9
Song et al. [22] ConvLSTM 84.0 87.8 81.5
Ma et al. [17] SW-UNet 84.0 82.0 89.0
Annavarapu et al. [2] Bi-FPN 82.8 92.2 78.9
Cao et al. [6] DB-ResNet 82.7 89.4 79.6
Wang et al. [25] MV-DCNN 77.9 87.0 77.3

Our Method DETR-SAM 91.4 95.2 93.3

of actual nodules detected. The F1 score balances these metrics, and the Dice Coefficient
evaluates the overlap between predicted and actual segmentation masks. Slice accuracy
quantifies the proportion of CT slices correctly classified as containing or not containing
a nodule, providing a high-level assessment of the ability to distinguish nodule-present
and absent slices. For medium and large nodules, the model achieves high precision
(96.7% and 97.8%) and recall (97.0% and 99.2%). Stage 2 yields a 91.4% DiceC, with
only a 3% drop from the Stage 1 F1-score, indicating strong segmentation accuracy.
On the UHN test set, the model attains 86.8% slice-wise accuracy, 79.1% F1-score, and
78.3% Dice, reflecting robustness despite greater tumor heterogeneity (25–55mm) and
distribution drift. The model maintains high precision (74.9%) and sensitivity (83.5%),
confirming generalization across diverse clinical conditions.

Table 2 presents a comparison of our proposed DETR-SAM approach against com-
parable models on LUNA16. Our DiceC of 91.4% outperforms next best models such
as MRUNet-3D, a multi-resolution U-Net with 3D convolutions (89.0%), and DB-NET,
a dual-branch CNN with attention mechanisms (88.9%). For sensitivity and specificity,
our scores of 95.2% and 93.3% exceed prior state-of-the-art models such as ConvLSTM
(92.2% sensitivity) and SW-UNet, a sliding window U-Net (89.0% specificity).
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Fig. 4. Qualitative results from Stage 1 (top row) region proposals for LUNA16 (red) and UHN
(blue), followed by Stage 2 (middle and bottom rows) masks from deconstructed MIP images.

Figure 4 illustrates full pipeline results, showing Stage 1 bounding box predictions
(LUNA16: red, UHN: blue) and Stage 2 segmentation masks from MIP-reconstructed
slices. The top slices highlight complex vascular structures and bronchioles that mimic
or obscure small nodules, while UHN tumors are larger and more numerous. Bounding
boxes exhibit high IoU, leading to accurate Stage 2 segmentation, where most tumors
are nearly perfectly delineated. However, the model occasionally misclassifies connected
pulmonary vessels as part of the nodule, as seen in the bottom-left mask.

5 Discussion

Our two-stage approach outperforms CNN and U-Net architectures. Models like MRUNet-
3D [1], DB-Net [4] enhance feature extraction but are constrained by fixed receptive
fields. Hybrid models such as 3D-MSViT [18] improve specificity (97.8%) and sensitiv-
ity but focus more on detection than segmentation. Bi-FPN and MV-DCNN emphasize
sensitivity but lack a balanced trade-off with specificity. Unlike prior hybrid methods,
we train end-to-end transformer models that make predictions without intermediary pro-
cessing [7, 27]. Other models oversample LUNA16 nodule slices during training, dis-
torting real-world prevalence, and lack external validation [6]. By preserving natural
nodule sparsity and validating on independent clinical data, our method surpasses pre-
vious models across all metrics and ensures greater generalization to variability.
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Table 3. Ablation Study Results: Performance of Different Configurations in the Proposed
Pipeline

Configuration F1 Score (%) Dice Coefficient (%)

Direct SAM Application – 3.4
Finetuned SAM Application – 19.7
Finetuned MedSAM Application – 26.7
S1: DETR + S2: Finetuned MedSAM 52.1 48.5
S1: Def.-DETR + S2: Finetuned MedSAM 94.2 91.4

While Stage 1 struggles slightly with nodules under 7mm, clinical significance is
limited as nodules <6mm rarely warrant follow-up [13]. Stage 1’s ability to sift through
highly sparse data and still detect nodules and tumors at state-of-the-art rates is the key
contribution of this work. However, errors in Stage 1 propagate to Stage 2, highlighting
dependency on precise region proposals. Future work could explore adaptive confidence
thresholds to reduce error propagation. Unlike balanced classification, our approach fol-
lows an anomaly detection paradigm where accuracy holds greater significance due to
the rarity of positive instances. Despite lower performance on UHN, the model gener-
alizes despite large nodule variability, imaging protocols, and distribution shifts.

5.1 Ablation Study

To evaluate each component’s impact, we conducted an ablation study (Table 3). Apply-
ing SAM directly to lung CT scans yielded a DiceC of 3.4%, confirming its inability to
segment nodules without guidance. MedSAM, despite pre-training on medical images
performed similarly achieving 26.7% after fine-tuning, showing that pre-training alone
does not ensure generalization. Introducing a detection stage improved results signifi-
cantly, DETR in Stage 1 raised DiceC to 48.5% by narrowing SAM’s search space but
struggled with small nodules (30% detection rate). Replacing DETR with Deformable-
DETR more than doubled segmentation accuracy, highlighting the importance of adap-
tive attention for small object detection.

These results highlight the necessity of a two-stage approach and a robust detec-
tion stage to mitigate class imbalance, with DETR outperforming other architectures in
detecting sparse, small nodules. Its self-attention mechanism enables flexible, context-
aware feature representations, distinguishing nodules from normal structures and poten-
tially learning hierarchical relationships that segmentation models alone cannot.

6 Conclusion

This study introduces LN-Transformer, a two-stage transformer framework tailored for
sparse lung nodule segmentation. Key contributions include integrating Deformable-
DETR with focal loss, MIP, SAM for mask refinement to address class imbalance and
segment nodules. Our method achieves state-of-the-art results on LUNA16 (F1: 94.2%,
Dice: 91.4%) and demonstrates robust generalization on an independent clinical dataset
(F1: 79.1%, Dice: 78.3%), highlighting its potential for clinical application.
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